- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Zhi (2)
-
Jiang, Teng (2)
-
Abdel-Aziz, Amal Kamal (1)
-
Abdelfatah, Sara (1)
-
Abdellatif, Mahmoud (1)
-
Abdoli, Asghar (1)
-
Abel, Steffen (1)
-
Abeliovich, Hagai (1)
-
Abildgaard, Marie H. (1)
-
Abudu, Yakubu Princely (1)
-
Acevedo-Arozena, Abraham (1)
-
Adamopoulos, Iannis E. (1)
-
Adeli, Khosrow (1)
-
Adolph, Timon E. (1)
-
Adornetto, Annagrazia (1)
-
Aflaki, Elma (1)
-
Agam, Galila (1)
-
Agarwal, Anupam (1)
-
Aggarwal, Bharat B. (1)
-
Agnello, Maria (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.more » « less
-
Klionsky, Daniel J.; Abdel-Aziz, Amal Kamal; Abdelfatah, Sara; Abdellatif, Mahmoud; Abdoli, Asghar; Abel, Steffen; Abeliovich, Hagai; Abildgaard, Marie H.; Abudu, Yakubu Princely; Acevedo-Arozena, Abraham; et al (, Autophagy)
An official website of the United States government
